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Transcriptomics of cardiac biopsies 
reveals differences in patients with 
or without diagnostic parameters 
for heart failure with preserved 
ejection fraction
Sarbashis Das   1, Christoffer Frisk1, Maria J. Eriksson2,3, Anna Walentinsson4, 
Matthias Corbascio3,5, Camilla Hage6,7, Chanchal Kumar4,8, Michaela Asp   9, 
Joakim Lundeberg   9, Eva Maret2,3, Hans Persson10,11, Cecilia Linde6,7 & Bengt Persson   1,12

Heart failure affects 2–3% of adult Western population. Prevalence of heart failure with preserved left 
ventricular (LV) ejection fraction (HFpEF) increases. Studies suggest HFpEF patients to have altered 
myocardial structure and functional changes such as incomplete relaxation and increased cardiac 
stiffness. We hypothesised that patients undergoing elective coronary bypass surgery (CABG) with 
HFpEF characteristics would show distinctive gene expression compared to patients with normal LV 
physiology. Myocardial biopsies for mRNA expression analysis were obtained from sixteen patients 
with LV ejection fraction ≥45%. Five out of 16 patients (31%) had echocardiographic characteristics 
and increased NTproBNP levels indicative of HFpEF and this group was used as HFpEF proxy, while 11 
patients had Normal LV physiology. Utilising principal component analysis, the gene expression data 
clustered into two groups, corresponding to HFpEF proxy and Normal physiology, and 743 differentially 
expressed genes were identified. The associated top biological functions were cardiac muscle 
contraction, oxidative phosphorylation, cellular remodelling and matrix organisation. Our results 
also indicate that upstream regulatory events, including inhibition of transcription factors STAT4, 
SRF and TP53, and activation of transcription repressors HEY2 and KDM5A, could provide explanatory 
mechanisms to observed gene expression differences and ultimately cardiac dysfunction in the HFpEF 
proxy group.

Coronary artery disease and hypertension are the most common etiologic factors for heart failure (HF). HF 
is characterised according to left ventricular ejection fraction (LVEF) as preserved (HFpEF, LVEF ≥ 45%) or 
reduced (HFrEF < 45%), as defined in our PREFERS design paper1. Heart failure affects 2–3% of the adult 
Western population2,3 and prevalence increases with age4,5. In particular, the proportion of HFpEF is increasing6,7, 

1Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, S-751 24, Uppsala, 
Sweden. 2Karolinska University Hospital, Department of Clinical Physiology, S-171 76, Stockholm, Sweden. 
3Karolinska Institutet, Department of Molecular Medicine and Surgery, S-171 77, Stockholm, Sweden. 4Translational 
Sciences, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, S-431 83, Gothenburg, 
Sweden. 5Karolinska University Hospital, Department of Thoracic Surgery, S-171 76, Stockholm, Sweden. 
6Karolinska Institutet, Department of Medicine, S-171 77, Stockholm, Sweden. 7Karolinska University Hospital, 
Heart and Vascular Theme, S-171 76, Stockholm, Sweden. 8Integrated Cardio Metabolic Center (ICMC), Department 
of Medicine, Karolinska Institutet, S-141 57, Huddinge, Sweden. 9Science for Life Laboratory, Royal Institute of 
Technology, S-171 21, Stockholm, Sweden. 10Karolinska Institutet, Department of Clinical Sciences, Danderyd 
Hospital, S-182 88, Stockholm, Sweden. 11Danderyd Hospital, Department of Cardiology, S-182 88, Stockholm, 
Sweden. 12Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, 
S-17177, Stockholm, Sweden. Sarbashis Das and Christoffer Frisk contributed equally. Correspondence and requests 
for materials should be addressed to B.P. (email: bengt.persson@icm.uu.se)

Received: 26 November 2018

Accepted: 25 January 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-39445-2
http://orcid.org/0000-0001-8799-691X
http://orcid.org/0000-0001-5941-7220
http://orcid.org/0000-0003-4313-1601
http://orcid.org/0000-0003-3165-5344
mailto:bengt.persson@icm.uu.se


2Scientific Reports |          (2019) 9:3179  | https://doi.org/10.1038/s41598-019-39445-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

with poor prognosis8 comparable to HFrEF. In contrast to HFrEF, there is currently no available evidence based 
therapy for HFpEF9, which may be explained by different pathophysiology between these HF conditions. It was 
proposed that co-morbidities such as ischemia, hypertension and diabetes may be the drivers of disease progres-
sion in HFpEF10 through diverse mechanisms more specific for HFpEF than HFrEF involving coronary micro-
vascular inflammation and endothelial dysfunction leading to intra- and extracellular rearrangements. This has 
been demonstrated in incomplete relaxation of myocardial strips11 and increased passive cardiac stiffness by titin 
changes and increased interstitial diffuse fibrosis10,12. Patients undergoing coronary bypass grafting (CABG) com-
monly have disturbances in LV function and thus may serve as models to study HF particularly since myocardial 
biopsies obtained during surgery provide a unique opportunity to study the gene expression in the different types 
of heart failure.

At the molecular level, gene expression programs are systematically regulated by transcription factors, chro-
matin regulators and other factors that are important for the establishment and maintenance of the cell state. 
Dysregulation of these programs can result in different diseases13. Studies of gene expression in heart tissue has 
a great potential to uncover the underlying molecular mechanisms leading to HF. In this regard, previous few 
studies have primarily attempted to identify gene expression differences between failing hearts (HFrEF) and 
normal hearts using RNA-seq analyses with limited number of samples14–16. There are also reports on RNA-seq 
expression in a mouse model for cardiac hypertrophy17.

In this study, we hypothesised that patients with HFpEF characteristics would show distinctive gene expres-
sion compared to patients with Normal physiology. Myocardial biopsies were obtained from patients undergoing 
elective CABG who all had LVEF ≥ 45%1. We performed RNA-seq based transcriptomics analysis in order to 
identify genes that are dysregulated in HFpEF compared to Normal.

Results
Patients.  From a total of 16 patients, 5 were prospectively classified as HFpEF proxy and 11 as Normal phys-
iology. The clinical patients’ characteristics are summarised in Table 1. The majority were male with a median 
age of 75 years in the HFpEF proxy group and 65 years in the Normal physiology group (p-value = 0.089). Three 
patients had a clinical diagnosis of heart failure, all in the HFpEF proxy group (patients 9, 11 and 15, Table 2). A 
history of hypertension (100% and 82%) and diabetes (60% and 45%) was present in HFpEF proxy and Normal 
physiology groups, respectively. One patient with Normal physiology had a history of myocardial infarction. 
Echocardiographic variables revealing HFpEF proxy or Normal physiology are shown in Table 2.

Gene expression profiles of LV tissue in HFpEF proxy and Normal physiology groups.  The 
transcriptome sequencing resulted in an average of 26 million paired-end reads per biopsy sample. Number of 
mapped reads ranged from 17 to 30 million with an average of 24 million (Fig. 1A) which covered more than 85% 
of the sequenced reads. Normalisation and batch correction was performed using Trim mean of the M-values 
(TMM) and ARSyNseq, respectively, after filtering out lowly expressed genes (Supplementary Fig. S1). The major-
ity (~90%) of the expressed genes were protein coding while less than 5% were detected as long noncoding RNA 
(lncRNA) or antisense RNA (Fig. 1B, Supplementary Fig. S2).

We first characterised differences between the gene expression profiles of the 16 samples, utilising an unsuper-
vised classification method – Principal Component Analysis (PCA). PCA using batch corrected normalised gene 
expression revealed two clusters, corresponding to HFpEF proxy and Normal physiology along the first principal 
component 1 (PC1). The PCA model revealed that the largest variation of the PC1 could explain 22% of the var-
iation while principal component 2 explained 14%. Additionally, any bias between these groups and sequencing 
batches was investigated and no batch effect contributing to this clustering was found (Fig. 1C).

The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model with 7-fold 
cross-validation depicted in Fig. 1B distinguished HFpEF proxy from Normal physiology using the first pre-
dictive component. An S-plot was generated to identify signature genes in both groups (Fig. 1D). In the S-plot, 
the magnitude of the contribution of each gene to the OPLS-DA model (p[1]) was plotted against significance 
of the corresponding genes (p(corr)[1]). As can be seen in Fig. 1E, genes (marked in red) contributing most to 
the discrimination of HFpEF proxy were MYH7, MYBPC3, TCAP, PTGDS, BSG, ALDOA, EEF2, IDH2, CRIP2, 
EEF1A2, PLN, CYCS, MYOZ2, MDH1 and DCN. Several of these genes were also found among the significantly 
differentially expressed genes (Fig. 1F; see below).

Genes dysregulated in HFpEF proxy patients.  Differentially expressed genes (DEGs) were identified 
using NOIseqbio with a false discovery rate (FDR) < 0.05. Our analysis identified 743 DEGs discriminating 
between HFpEF proxy and Normal physiology whereof the majority were down-regulated in HFpEF proxy sam-
ples compared with Normal physiology samples (Fig. 2A). The distribution of fold change as a function of mean 
expression difference in all the cases revealed that more than 90% of significant DEGs had fold changes ranging 
from 1.30 to –2.60 (Fig. 2A,B). For comparison, we also calculated DEGs using FDR < 0.1 (Fig. 2C,D), result-
ing in 328 up-regulated and 1285 down-regulated genes in HFpEF proxy samples. The functional analysis (cf. 
below) of these DEGs showed similar results to those using FDR < 0.05, and we therefore kept the more stringent 
FDR < 0.05 DEGs in the current analysis.

Among the 743 DEGs, 69 genes were transcriptional regulators, of which 67 were down- and 2 up-regulated. A 
comparison between the predicted DEGs with the genes in the S-plot derived from OPLS-DA showed that most 
DEGs with few exceptions are located at largest distances from the axes centre. Thus, the dysregulated genes were 
predicted by two independent methods (Fig. 1F). The complete list of up- and down-regulated genes is given in 
the Supplementary Table S1.

The top biological processes associated with down-regulated genes in the HFpEF proxy group were cardiac 
muscle contraction and extracellular matrix assembly/organization (Fig. 3A, Supplementary Table S2). Enriched 

https://doi.org/10.1038/s41598-019-39445-2


3Scientific Reports |          (2019) 9:3179  | https://doi.org/10.1038/s41598-019-39445-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Gene Ontology (GO) terms reflecting molecular function revealed genes for cadherin binding, kinase binding, 
actin filament and integrin binding (Fig. 3B, Supplementary Table S2).

We found down-regulation of genes involved in cardiac muscle contraction: myosin heavy chain 6 and 7 
(MYH6,MYH7), cardiac myosin-binding protein C (MYBPC3), cardiac troponin T2 (TNNT2), titin cap (TCAP) 
and two potassium voltage-gated channels (KCNH2,KCNQ1).

All patients 
(n = 16)

HFpEF 
pathophysiology 
(n = 5) Normal (n = 11) p-value

Age (years) (median 
(Q1;Q3)) 68 (63;73) 75 (72;77) 65 (61;68) 0.089

Sex Men/Women (n (%)) 15/1 (94%/6%) 4/1 (80%/20%) 11/0 (100%/0%) 0.312

Smoking Current (n (%)) 1 (7%) 0 1 (10%) 0.592

Smoking Previous (n (%)) 10 (67%) 3 (60%) 7 (70%)

Previous

Heart failure 3 (19%) 3 (60%) 0 0.018

Atrial fibrillation 4 (25%) 2 (40%) 2 (18%) 0.547

Myocardial infarction 1 (7%) 0 1 (10%) 1.000

Percutaneous coronary 
intervention 3 (19%) 2 (40%) 1 (10%) 0.524

CABG 0 (0%) 0 0 1.000

Stroke/TIA 1 (7%) 0 1 (10%) 1.000

Peripheral artery disease 2 (13%) 2 (40%) 0 0.083

Hypertension 14 (88%) 5 (100%) 9 (82%) 1.000

Diabetes
type 1
type 2

8 (50%)
1 (7%)
7 (44%)

3 (60%)
0
3 (60%)

5 (45%)
1 (10%)
4 (36%)

1.000

COPD 0 (0%) 0 0

Anemia 0 (0%) 0 0

Cancer 1 (7%) 0 1 (10%) 1.000

At enrolment (median (Q1;Q3))

BMI 27 (24;30) 27 (26;28) 28 (23;32) 0.739

Systolic blood pressure 
(mmHg) 135 (130;145) 148 (138;156) 130 (125;140) 0.112

Diastolic blood pressure 
(mmHg) 80 (75;80) 83 (73;86) 80 (75;80) 0.537

Heart rate (beats/minute) 66 (57;77) 66 (51;81) 66 (63;72) 0.847

Creatinine (μmol/L) 82 (75;102) 84 (76;104) 79 (74;100) 0.867

Hb (g/L) 144 (137;153) 151 (136;159) 144 (137;149) 0.609

Sodium (mmol/L) 140 (138;141) 140 (140;141) 140 (136;141) 0.733

Potassium (mmol/L) 4.0 (3.8;4.3) 3.9 (3.3;4.3) 4.0 (3.8;4.3) 0.592

Troponin T (ng/L) 10 (7;15) 16 (10;17) 9 (5;11) 0.052

NT-proBNP (pmol/L) 205 (127;367) 298 (190;697) 181 (84;338) 0.090

LDL (mmol/L) 2.0 (1.5;2.8) 1.5 (1.4;2.0) 2.3 (1.5;3.0) 0.408

Triglycerides (mmol/L) 1.3 (1.0;2.0) 1.2 (1.0;1.3) 1.4 (1.1;2.0) 0.413

HbA1c (mmol/mol) 41 (37;46) 41 (40;46) 43 (35;46) 0.780

Urate (μmol/L) 359 (261;423) 405 (249;496) 355 (273;419) 0.579

Treament (n (%))

Nitrates (long standing) 8 (50%) 3 (60%) 5 (45%) 1.000

Antiplatelets 13 (81%) 5 (100%) 10 (91%) 1.000

Anticoagulants 2 (13%) 2 (40%) 0 0.083

Betablockers 15 (94%) 4 (80%) 11 (100%) 0.313

ACE inhibitors 8 (50%) 3 (60%) 5 (45%) 1.000

ARBs 10 (63%) 4 (80%) 6 (55%) 0.588

Statins 16 (100%) 5 (100%) 11 (100%) 1.000

Loop diuretics 0 (0%) 0 0

Tiazide diuretics 4 (25%) 1 (20%) 3 (27%) 1.000

Table 1.  Patients' characteristics. Data are expressed as median and quartiles (Q1;Q3) or number (%). 
ACE = Angiotensin converting enzyme; ARB = Angiotensin II receptor blocker; BMI = Body Mass 
Index; COPD = Chronic Obstructive Pulmonary Disease; CABG = Coronary Artery Bypass Surgery; NT-
proBNP = N-Terminal pro-Brain Natriuretic Peptide; TIA = Transient Ischemic Attack.
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Matrix-related genes that were down-regulated in the HFpEF proxy group LAMA5, LAMB2, coding for two 
laminin subunits (α5 and β2), SPARC coding for secreted protein acidic and rich in cysteine, and a number of 
collagens – Iα1, IIIα1, IVα, IVβ1, VIα1, VIβ1 and XVIIIα1.

Among the up-regulated genes we identified lumican (LUM), phospholamban (PLN), myozenin 2 (MYOZ2), 
and cytochrome c (CYCS).

Upstream regulators and regulatory effect networks.  The Ingenuity Pathways Analysis (IPA) anal-
ysis suggested that out of the total set of 736 DEGs (7 Ensembl gene IDs were not recognised by IPA and hence 
excluded from this analysis), 381 DEGs (52%) belong to known upstream regulators predicted to be activated or 
inhibited (activation Z-score ≥ ±2), at a Fisher’s Exact test p-value ≤ 0.0518. A comprehensive list of 52 upstream 
regulators along with predicted activation states is found in Supplementary Table S3. Of these regulators, 34 were 
predicted to be inhibited and 18 were to be activated (Fig. 4A).

Among the upstream regulators predicted in our analysis to be inhibited in the HFpEF proxy group were 
transcription factor STAT4, HTT and tumour suppressor TP53 (Fig. 4), the latter regulating a total of 96 DE genes 
(13% of the DE gene set). Additional predicted inhibited upstream regulators included specific transcription fac-
tors (SRF, MYOD1, FOS and HIF1A; Supplementary Fig. S3). Furthermore, histone demethylase KDM5A and the 
basic helix–loop–helix (bHLH) type transcription factor HEY2 (Fig. 4), both transcriptional repressors involved 
in Notch signalling, were among the identified activated upstream regulators.

Based on the predicted upstream regulator, a total of 8 regulatory effect networks were identified 
(Supplementary Table S4). These networks depict potential paths by which activation or inhibition of specific 
transcription factors lead to impaired cardiac function, heart failure and other heart diseases (networks 1–4,7), as 
well as impaired vessel formation/endothelial cell function (networks 3,5,6,8). The most causally consistent and 
densely connected network is shown in Fig. 5.

Discussion
To our knowledge, this is the first study using RNA-seq to identify dysregulated genes in patients with HFpEF 
characteristics, as schematically summarised in Fig. 6. In this exploratory translational study of elective CABG 
patients undergoing perioperative myocardial biopsies, we found that patients in the HFpEF proxy group dis-
played distinctive gene expression compared to patients with Normal physiology. The top biological functions 
associated with down-regulated genes in HFpEF proxy patients were cardiac muscle contraction, oxidative phos-
phorylation, endocytosis/cell remodelling, matrix organization and fibrosis. Further, genes regulated by tran-
scription factor STAT4 and tumour suppressor TP53 were found to be down-regulated.

Patients.  The patients investigated in this study were the initial group in whom the myocardial biopsies 
were obtained within the ongoing CABG-PREFERS study1. They represent patients with a clinical indication for 

Patient 
nr Group Age Gender

Previous medical history

LVEF 
(%)

LAVI 
(mL/
m2) E/e′

E′sept 
(m/s)

E′lat 
(m/s)

TR_ 
Vmax 
(m/s)

NTpro 
BNP  
(ng/L)

LVGLS  
%

LVMI 
(g/m′) RWT

LVDed 
(mm)

IVSTed 
(mm)

PWTed  
(mm)

Hyper- 
tension

Diabetes  
type I

Diabetes  
type II

Atrial  
fibri- 
llation*

Stroke/ 
TIA

Peri- 
pheral 
vascular  
disease

1 HFpEF 81 M x x 68 43.5 10.6 0.060 0.070 2.4 697 −21.1 102 0.38 48 11 9

2 HFpEF 58 F x x 63 52.1 13.1 0.062 0.075 na 161 −20.4 94 0.45 44 13 10

9 HFpEF 71 M x 54 40.3 8.8 0.070 0.080 2.5 190 −12.9 107 0.42 52 11 11

11 HFpEF 77 M x x x x 49 44.1 11.4 0.064 0.098 2.9 2160 −15.2 89 0.49 45 11 11

15 HFpEF 75 M x x x 48 37.1 12.0 0.048 0.060 2.8 298 −15.8 121 0.32 56 13 9

3 Normal 67 M x x 57 31.5 5.5 0.050 0.070 na 338 −16.6 83 0.44 45 11 10

4 Normal 68 M x 60 25.0 5.4 0.070 0.140 na na −16.8 101 0.39 46 14 9

5 Normal 73 M x 57 33.1 5.8 0.065 0.120 na 396 −18.4 76 0.33 48 9 8

6 Normal 49 M x x 48 32.0 7.6 0.098 0.100 2.0 181 −11.9 84 0.32 50 12 8

7 Normal 64 M x 56 27.9 9.1 0.082 0.104 na 147 −17.6 80 0.42 43 14 9

8 Normal 65 M 60 27.3 7.8 0.080 0.100 na 262 −17.0 58 0.33 43 10 7

10 Normal 60 M x x 66 33.5 8.0 0.072 0.124 na 219 −19.5 77 0.36 45 10 8

12 Normal 67 M x x x 53 25.5 8.7 0.056 0.047 na 77 −18.5 103 0.36 50 12 9

13 Normal 61 M x x 65 30.0 6.8 0.092 0.116 na 107 −20.0 100 0.38 47 12 9

14 Normal 63 M x x 59 40.6 6.8 0.097 0.099 na 66 −19.9 84 0.37 49 11 9

16 Normal 68 M x 61 35.8 7.6 0.094 0.113 na 84 −22.0 117 0.44 50 11 11

Table 2.  List of patients included in this study with notations of disease status (HFpEF/Normal), age, 
gender, comorbidities, and echocardiographic parameters. LVEF – left ventricular ejection fraction,  
LAVI – left atrial volume index, E – early mitral inflow velocity, e – early diastolic tissue velocity,  
sept – septal, lat – lateral, TR_Vmax - tricuspid regurgitation maximal velocity, LVGLS –left ventricular 
global longitudinal strain, LVMI - left ventricular mass index, RWT – relative wall thickness, LVDed – left 
ventricular diameter, enddiastolic, IVSTed – intraventricular septum thickness, enddiastolic, PWTed 
– posterior wall thickness, venddiastolic. *Only patient 11 had atrial fibrillation at echocardiography 
examination. Patients 9, 11 and 15 had a clinical diagnosis of heart failure.
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Figure 1.  Gene expression profiles of left ventricle tissues discriminate HFpEF proxy from Normal physiology. 
(A) Stack barplot showing uniquely mapped, multiple mapped and unmapped reads. The x axis shows the 
samples and the y axis the number of reads. (B) Bar plot showing the relative abundance of each biotype (y axis) 
in the samples (x axis). (C) Principal component analysis (PCA) score plot with the two principal components 
(PC1 and PC2) plotted on the x- and y-axis, respectively. Each data point represents one sample, which is 
colour-coded according to the condition and shaped according to the sequencing batch. Green and orange 
colours correspond to Normal physiology and HFpEF proxy, respectively. (D) Orthogonal projections to latent 
structures discriminant analysis (OPLS-DA) score plot for the groups HFpEF proxy (orange) and Normal 
physiology (green). (E) S-plot of the OPLS-DA data showing the magnitude of each gene’s contribution to the 
separation, p[1], in relationship to its significance, p(corr)[1]. Genes contributing to the highest magnitude of 
the separation for the respective groups are highlighted in red/orange. Shaded boxes indicate up-regulated genes 
in the HFpEF proxy group (bottom orange box) and in the Normal physiology group (top green box). (F) The 
same plot as in “E” but genes overlapping with differentially expressed genes are highlighted with in red/orange.

https://doi.org/10.1038/s41598-019-39445-2


6Scientific Reports |          (2019) 9:3179  | https://doi.org/10.1038/s41598-019-39445-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

elective CABG. Hence, very few had a previous myocardial infarction or coronary intervention and few had a 
previous HF diagnosis. The three patients who had a HF diagnosis were all in the HFpEF proxy group.

HFpEF.  HFpEF is more frequent today, which may be due to increasing life span of the population, improved 
survival after myocardial infarction and increasing rates of HF risk factors like hypertension, overweight, and 
diabetes. However, the pathophysiology of this disease in not well understood at the transcriptome level. Already 
in the 1980s, it was recognised that ischemia might lead to diastolic dysfunction. We identified HFpEF charac-
teristics in 31% of the group of patients planned for elective CABG, implying that other prevalent comorbidities 

Figure 2.  Identification and annotation of the dysregulated genes in HFpEF proxy versus Normal physiology. 
(A) Bar plot showing number of differentially expressed genes between HFpEF proxy and Normal physiology 
predicted using NOISeq with false discovery rate (FDR) adjusted p-value < 0.05. The x axis represents 
significantly dysregulated genes and the y axis showing the fold change in log2 scale of the corresponding 
genes. Down-regulated genes in blue and up-regulated genes in orange. (B) Volcano plot of the differentially 
expressed genes. The x axis represents fold change in log2 scale of HFpEF proxy versus Normal physiology while 
the y axis indicates the differences of mean expression between HFpEF proxy and Normal physiology. Each 
point represents a gene, and significantly expressed genes are highlighted in green. Genes that are significantly 
expressed (FDR-adjusted p-value < 0.05) and with a difference of mean expression above 3.5 are labelled with 
gene symbols. (C) Similar to plot “A”, but FDR-adjusted p-value < 0.1. (D) Similar to plot “B” but FDR-adjusted 
p-value < 0.1. Genes that are significantly expressed and with a difference of mean expression above 3.7 are 
labelled with gene symbols.
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except coronary artery disease, such as hypertension and diabetes may also play a role for development of HFpEF 
suggesting a link to microvascular dysfunction19.

Imaging.  HFpEF constitutes a diagnostic challenge and in an individual patient, there may be problematic 
measure overlaps and grey zones. Poor echocardiographic windows, tachyarrhythmias and atrial fibrillation 
makes measurements more difficult. The present guidelines advocate the use of at least 4 up to 8 parameters of 
structural LV dysfunction and diastolic dysfunction for diagnosis and risk prediction, some of these parameters 
may be used interchangeably5,20. In summary, the number of altered variables may increase the precision of the 
HFpEF diagnosis. In the current study we therefore used state-of-the-art guideline criteria for HFpEF and a 
majority of the 4–8 criteria achieved in an individual patient should be positive for rendering a HFpEF proxy 
diagnosis. Our definition is further strengthened by the fact that we used a consensus method in ambiguous 
patients. Although the five HFpEF proxy patients fulfilled the defined criteria they only had mild dysfunction and 
low NT-proBNP levels. However, we believe that such early stage HFpEF is highly relevant since these patients 
seem more sensitive to treatment with RAAS blockade21. Thus, RNA sequencing may be of particular value in 
early or mild HFpEF patients for finding new pathophysiologic translational mechanisms.

Genes dysregulated in HFpEF proxy patients.  To get an overview of the gene expression profiles, we 
performed PCA and OPLS-DA to distinguish HFpEF proxy patients from those with Normal physiology. Our 
results (Fig. 1C,D) suggest that the two groups have different gene expression profiles. The downregulated genes 
(Supplementary Table S1) were analysed with respect to enrichment of GO terms (Fig. 3A,B), revealing that 
cardiac muscle contraction, oxidative phosphorylation, endocytosis and extracellular matrix organization were 
associated with the dysregulated genes (Fig. 3A, Supplementary Table S2). These first two GO terms were also 
found to be enriched in a mouse model of pathological hypertrophy17.

Downregulated cardiac contraction genes may correlate with impaired systolic pump function in HFpEF 
patients as has been described in previous studies22. The gene TNNT2 encodes for the tropomyosin binding 
subunit in the troponin complex which is located in the thin filament of the striated muscle and regulates muscle 
contraction in response to alteration in the intracellular calcium ion concentration23. However, we found no 
differences between the two groups for measures of systolic function at rest. EF and global longitudinal strain 
(GLS) were similar in the two groups. The described downregulated genes for myocardial contraction may be 
related to more long-term changes caused by passive cardiac stiffness by fibrosis or oxidative titin changes12. 

Figure 3.  Functional classification of the differentially expressed genes. (A,B) GO annotations of biological 
process and molecular function, respectively, of the down-regulated genes in HFpEF proxy group. The 
horizontal bars show percentage of the down-regulated genes with the corresponding GO annotations (scale at 
bottom x axis), The orange lines represent significance of the corresponding GO annotations (scale at top x axis) 
as calculated by Enrichr53.
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Short-time adaptations of systolic function, cardiac relaxation and diastolic function may counteract long-term 
adaptations and could be caused by other regulatory physiological mechanisms rather than transcriptome pro-
liferative changes.

Figure 4.  Predicted upstream regulators and gene expression of their regulomes. (A) Bar plot showing 
activation or inhibition scores of the upstream regulators. Transcription factors are highlighted in red. (B–F) 
Heat maps showing the expression profiles of the genes regulated by predicted transcription factors from A. 
Additional heat maps are shown in Supplementary Fig. S3. Samples in the HFpEF proxy group are coloured 
orange in Condition, and samples in the Normal physiology group are coloured green. The regulators genes 
were identified using IPA. Patient numbers and conditions are shown at the bottom of each heatmap.
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Our study shows that RASD1, coding for ras-related dexamethasone-induced protein 1, is downregulated 
in HFpEF proxy patients. RASD1 is a modulator of cardiac endocrine function in response to volume overload 
underlying anti-natriuretic peptide excretion such as atrial natriuretic peptide (ANP) and brain natriuretic pep-
tide (BNP)24. RASD1 has also been shown to be downregulated in volume overloaded rat hearts24.

Furthermore, PLN, coding for phospholamban was upregulated in HFpEF proxy patients. PLN is a pentamer 
and a major substrate for the c-AMP dependent kinase in cardiac muscle. Phospholamban modulates the activity 
of the sarcoplasmatic reticulum ATPase type 2 (SERCA 2a), which in turn modulates Ca2+ handling by the sar-
coplasmatic reticulum and increases both contractility and relaxation, at least in studies of electric cardiac con-
tractility modulation (CCM) therapy25. In contrast, these genes have been seen to be downregulated in HFpEF26.

During the cardiac cycle there is an active coupling between contractility during systole and relaxation 
during early diastole. Cardiac contraction and relaxation are both closely linked active energy dependent pro-
cesses, i.e. in the ischemic cascade. The finding of downregulated genes in the HFpEF proxy group for oxidative 

Figure 5.  Transcription factor regulatory effect network identified using Ingenuity Pathway Analysis (IPA). In 
the network nodes, the upper panel shows transcription factors, the middle panel shows differentially expressed 
genes, and the lower panel shows biological functions and diseases. For the network edges, a solid line indicates 
direct interaction, while a dashed line indicate indirect interaction. Node colours in upper and lower panels: 
predicted activation in orange; predicted inhibition in blue. Node colours in middle panel: downregulated in 
data set coloured green; upregulated in data set coloured red (not represented in this network). Edge colours; 
predicted activation in orange; predicted inhibition in blue, findings inconsistent with state of downstream node 
in yellow; effect not predicted in grey.

Figure 6.  Schematic summary of the current study. Cardiac biopsies from CABG patients were submitted 
to RNA sequencing to detect differentially expressed genes between HFpEF and Normal. These differentially 
expressed genes were characterised using gene ontology and predicted transcription factor regulatory effect 
network.
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phosphorylation and energy supply may thus be considered crucial for development for HFpEF as regards both 
systolic and diastolic cardiac function and in relation to ischemia in these patients. Further, transcriptional 
changes may develop more slowly and be counteracted by short-term alterations of contractility and relaxa-
tion by changes in neurohormonal activation and sympathetic tone, calcium fluxes, and ischemia27. Sympathetic 
tone is increased in both aging and heart failure, by increasing circulating catecholamines but also decreased 
β-adrenoreceptor sensitivity28. Calcium handling in diastole is essential to remove Ca2+ from the cytosol to ensure 
cardiomyocyte relaxation by SERCA back into the Sarcoplasmatic reticulum29. Traditional RAAS- and betablock-
ade does not show benefits in HFpEF, but new knowledge of role of β-arrestins and G-protein coupled receptor 
kinases (GRKs) may open new targets for treatment of HFpEF30.

Our results show several downregulated genes involved in extracellular matrix assembly, which may influence 
remodelling and dilatation of the heart rather than increasing passive myocardial stiffness as shown for HFpEF12 
due to increased synthesis of collagens typically with predominance for collagen I and III in the myocardium. 
This finding is therefore surprising and counterintuitive. However, the process of myocardial fibrosis is com-
plex and involves dynamics of fibrous tissue turnover including sevveral steps; active synthesis, crosslinking and 
active degrading of collagen31. The genes LAMA5 and LAMB2, coding for two laminin subunits (α5 and β2), 
were also downregulated in HFpEF proxy patients. The secreted protein acidic and rich in cysteine (SPARC) is 
a matrix-cellular collagen binding protein serving a key role in collagen assembly into the extracellular matrix. 
Recent studies demonstrated that disruption of the SPARC gene is associated with decreased capacity to generate 
organised, mature collagen fibres32.

ANKRD1 is a transcription factor known to interact with sarcomeric proteins in the myofibrillar stretch sen-
sor system33. It has been observed that the expression of ANKRD1 in both transcription and protein levels were 
increased in failing heart15,34. In our data we also see a trend of upregulated mRNA expression in the HFpEF 
proxy patients.

We find that the gene LUM coding for lumican is among the most up-regulated genes in the HFpEF proxy 
group compared to Normal physiology. Lumican is an extracellular matrix localised proteoglycan associated with 
inflammatory conditions known to bind collagen. In a recent study, cardiac lumican was increased in experimen-
tal and clinical HF35. This study also indicated that inflammatory and mechanical stimuli induce lumican produc-
tion by cardiac fibroblasts indicating a role in HF development. However, we are unaware of whether lumican has 
previously been shown to be up-regulated in CABG and HFpEF patients.

Upstream regulators and regulatory effect networks.  The tumour suppressor TP53 has recently been 
described as an important regulatory factor in the heart36. In our study, 96 DE genes (13%) belong to those 
regulated by TP53 (Fig. 3B). It has been described to be increased in human dilated cardiomyopathy (DCM)37, 
suggesting that elevation of TP53 also plays a key role in the common path toward heart failure. There are data 
showing that TP53 inhibits angiogenesis by suppressing HIF-1 resulting in myocardial hypoxia and cardiac dys-
function which may be a novel molecular mechanism underlying transition of cardiac hypertrophy to HF38.

STAT4 is important in both innate and adaptive immune responses39,40. However, STAT4 did not show tran-
scriptional repression in the HFpEF proxy group, indicating that additional mechanisms, e.g. post-translational 
modifications, protein–protein interactions, might be involved in providing the inhibitory effect.

We further hypothesised a regulatory effect network model for mechanistic understanding of the disease and 
dysregulated genes using the IPA regulatory effect tool. The network illustrates potential mechanism(s) by which 
transcription regulator activation (KDM5A, HEY) and inhibition (SRF, IFI16) may lead to impaired cardiac func-
tion (Fig. 5).

KDM5A (retinoblastoma-binding protein 2/RBP2) encodes a histone demethylase that is part of the core 
Notch–RBP-J repressor complex41 and has implicated in transcriptional regulation of Hox genes and cytokines42. 
It also plays a role in tumour progression and selective inhibition blocks cancer cell growth43. Little is known 
regarding the role of this gene in heart. In a recent study, likely disease-causal KDM5A variants were uncovered 
in whole exome sequencing in patients with congenital heart disease (CHD)44.

HEY2 encodes a basic helix-loop-helix (bHLH)-type transcription factor that is preferentially expressed in 
the developing and adult cardiovascular system45. It acts as a transcriptional repressor downstream of Notch 
signalling pathway46 and likely plays a central role in the cardiac transcriptional machinery47. For example, HEY2 
expression levels influence cardiac hypertrophy and the progression to heart failure in response to pressure over-
load through modulation of apoptosis and GATA4 activity48. Our network analysis results suggest that activation 
of HEY2 may have contributed to cardiac dysfunction in HFpEF proxy via transcriptional repression of key car-
diac transcription activators GATA4 and NKX2.5, among others.

Serum response factor (SRF) is a central cardiac transcription factor required for appearance of beating sar-
comeres in the heart49. Based on our analysis, inhibition of SRF with accompanied downregulation of its target 
genes (GATA4, NKX2.5, MYH6, MYH7, TNNT2, TCAP and others) could be one additional explanatory mecha-
nism underlying cardiac dysfunction in the HFpEF proxy group.

Although the exact function of p53 and IFN-inducible gene IFI16 is not currently known, it has been proposed 
to act as transcriptional repressor and tumour suppressor via activation of p53 signals and inflammasome50,51.

In addition to IPA, we also explored network-based approaches for transcription factors enrichment; ChEA-db 
which is transcription factor targets database inferred from integrating literature curated Chip-X data52 and tran-
scription factor protein-protein interaction networks53. The enrichment analysis revealed TP53, SMAD2, SMAD3 
and ESR1 among the enriched transcription factors which were also predicted by IPA as upstream regulators.

Limitations and strengths.  The strength of this study consists of the revealed gene expression differences 
between HFpEF and Normal groups found in myocardial biopsies. However, there are some limitations in the 
study, such as relatively small number of patients used and unequal distribution between HFpEF and Normal. 
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In order to obtain myocardial biopsies, we have chosen patients undergoing elective CABG enabling us to safely 
obtain tissue samples. Based on data from the SWEDEHEART (Swedish Web-system for Enhancement and 
Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies) registry 
we knew that around 20–30% of elelective CABG patients had LVEF ≥ 45%. To identify the HFpEF group, we 
used echocardiographic evaluation according to current international Guidelines. We could confirm that a pro-
portion of patients indeed had HFpEF characterstics. Due to limited amounts of biopsy material, we had to use 
the entire biopsy to get deeper RNA sequencing for better sensitivity. Consequently, we were unable to perform 
any validation experiments which may be considered a limitation. A larger cohort of patients, which we aim at in 
the future, will add more insight into differences in gene expression between these two groups.

Conclusions.  This exploratory study could confirm our hypothesis that patients undergoing CABG with 
HFpEF characteristics compared to patients with Normal physiology had distinctive gene expression in cardiac 
biopsies with downregulated genes for myocardial contraction, energy supply, remodelling and fibrosis. We con-
sider differences within these functional areas relevant for possible pathophysiological mechanisms in HFpEF. 
However, down-regulation of these functions in patients with HFpEF characteristics is complex to describe and 
understand. Our findings lend to support our further studies in a larger patient cohort to find pathophysiological 
mechanisms that can explain and ultimately lead to treatment for HFpEF.

Methods
Patients.  Patients enrolled were scheduled for elective CABG without concomitant valve surgery and with 
preserved LVEF. They all had angina pectoris with or without a previous myocardial infarction. Cardiac biopsies 
were obtained during CABG for analysis of mRNA expression in the myocardial tissue. All patients were assessed 
at a baseline visit 4–8 weeks prior to CABG by clinical characteristics, echocardiography and blood sampling 
including natriuretic peptides. From the ongoing study CABG-PREFERS1 we now report data from the initial 
patients.

Descriptive data are presented as median and quartiles (Q1;Q3) or number (%), and comparisons between 
groups were performed by Wilcoxon rank sum test and Fisher’s exact test as appropriate.

Definitions.  Preserved LVEF was defined at the time of study design as LVEF ≥ 45%1. The patients were 
divided into two groups according to echocardiography, NTproBNP levels and HF guidelines definitions5. The 
group with echocardiographic characteristics and increased NTproBNP levels indicative of HFpEF1,5 was called 
HFpEF proxy for the purpose of this study and was used as a representative for HFpEF even when not showing 
signs or symptoms of heart failure. The Normal physiology group had LVEF ≥ 45% and no echocardiographic 
signs of HFpEF54.

The HFpEF proxy definition was based on LVEF ≥ 45% and the combination of the following five echocardio-
graphic criteria; 1. left atrial volume indexed for body surface area (LAVI) > 34 ml/m2, 2. LV mass index ≥115 g/m2  
for males or ≥95 g/m2 for females, 3. ratio of early mitral inflow wave velocity (E) to myocardial tissue early dias-
tolic wave velocity (e′) defined as E/e′ ≥ 8, 4. e′ septal <0.07 m/s or e′ mean septal/lateral <0.09 m/s, 5. tricuspid 
regurgitation velocity >2.8 m/s, and additionally NTproBNP > 125 ng/L. Three abnormal criteria of these five 
were required to fulfil the definition (majority rule). In equivocal cases, classification was performed by consensus 
of two experts (M.J.E. and H.P., blinded for clinical characteristics) in line with previous experiences from the 
CHARM substudy20.

Echocardiography.  Transthoracic Doppler echocardiography was performed according to guidelines as 
previously reported1. A Vivid 9 ultrasound system (Vingmed-General Electric, Horten, Norway) was used in 
all studies. Images were digitally stored on a dedicated server, and data analysis was performed offline on the 
EchoPAC workstation (GE EchoPAC sw only, Norway) by one experienced sonographer. The mean value of 3 
cardiac cycles was calculated for each variable.

Tissue collection.  From patients undergoing CABG, core needle biopsies were taken from the lateral wall 
of the left ventricle before initiation of cardiac arrest and stored in −70 °C as previously described1 and used for 
mRNA analysis. Patients were prepared for surgery according to standard clinical routines with placement of a 
central venous line in the internal jugular vein, an arterial line in the distal radial artery and a peripheral venous 
line in the brachial vein. A midline sternotomy was performed and one or two mammary arteries were procured 
for usage as conduits55.

RNA extraction and sequencing.  Total RNA was extracted using the RNeasy Fibrous Tissue Mini Kit 
(#74704, Qiagen). RNA libraries for sequencing were prepared using poly-A selection and the Illumina RNA 
strand-specific TruSeq Stranded mRNA Sample prep kit with 96 dual indexes (Illumina, CA, USA) according to 
the manufacturer’s instructions with the following changes. The protocols were automated using an Agilent NGS 
workstation (Agilent, CA, USA) using purification steps as described56,57.

Clustering was done by ‘cBot’ and samples were sequenced on HiSeq. 2500 (HiSeq Control Software 2.2.58/
RTA 1.18.64) with a 2 × 125/2 × 150 setup using ‘HiSeq SBS Kit v4’ chemistry. The Bcl to FastQ conversion was 
performed using bcl2fastq-v2.17.1.14 from the CASAVA software suite. The quality scale used was Sanger/
phred33/Illumina 1.8 + .

Analysis of transcriptome (RNA-Seq) data.  Whole transcriptome sequencing was performed for each 
biopsy. Initial quality checking of the sequencing raw reads was performed to identify potential outliers before 
doing further analysis using FastQC. Sequencing paired-end reads were mapped towards the human reference 
genome (version GR38) using Star Aligner58 with default options, and Ensembl genome annotation (version 
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37) was used for subsequent analysis. Reads that mapped to the exons of the coding genes were counted using 
HTSeq.59. Genes with count values of zero (i.e. no read detected) in all samples were filtered out before fur-
ther analysis. Genes were then categorised into different biotypes and distribution over the reference genomes 
was calculated. Count data was also investigated for several potential biases such as RNA-degradation, GC con-
tent etc. using NOISeq.60 package in R (http://www.R-project.org). Before normalisation, lowly expressed genes 
were filtered out using proportion test per condition and multiple testing correction as per NOIseq manual60. 
Normalisation of the count data was performed using the Trim mean of M-values (TMM) approach61.

Batch correction of the data was performed using ARSyNseq function of the NOISeq package60. Differential 
gene expression analysis was done using the function noiseqbio with parameters k = 0.5, norm = ‘n’, lc = 0, r = 20, 
adj = 1.5, a0per = 0.9, which is recommended for clinical RNAseq samples60. For NOISeq, we set the parameter ‘q’ 
to 0.95, corresponding to a false discovery rate (FDR) < 0.05. Analysis and plots were generated in R environment 
using ggplot2.

Principal component analysis (PCA) was performed on the log2 transformed values of normalised batch cor-
rected expression values using “princomp” function in R environment.

Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was performed using SIMCA 
v14.1 (Umetrics, Umeå, Sweden) on the already normalised and batch corrected data to identify genes showing 
high variation in a pairwise manner. The Pareto scaling method was used in this case, since it reduces the relative 
importance of large values, but keeps data structure partially intact, and we wanted to detect small to medium 
feature differences.

Clustering analysis of the differentially expressed genes (DEGs) was performed using unsupervised hierarchi-
cal clustering. Normalised expression data were standardised before plotting as heatmap using pheatmap package 
for R environment.

Functional analysis of the dysregulated genes.  Gene set enrichment analysis for Gene Ontology (GO) 
terms with focus on biological process (BP) and cellular component (CC) was performed for the DEGs (using 
gene symbols as input) using Enrichr53 with the probability density function as p-value model. The enrichment 
was tested using Fisher’s exact test with corrected p-value < 0.05. The DEGs were further analysed through the 
use of IPA18 (Ingenuity Pathways Analysis; QIAGEN Inc., https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis). This tool uses the information in the Ingenuity® Knowledge Base to assess signal-
ling and metabolic pathways, upstream regulators, regulatory effect networks, and disease and biological func-
tions that are likely to be perturbed based on a data set of interest (in our case, the DEGs). The IPA upstream 
analysis18 was performed to predict which regulators (i.e. any gene, protein or miRNA) that are activated or 
inhibited based on a calculated Activation Z-score, to explain the observed DEG changes in HFpEF proxy group 
vs. Normal physiology group. The IPA regulatory effect network analysis generated hypotheses for how a phe-
notype, function or disease is regulated by activated or inhibited upstream regulators. In our study, regulatory 
effect network analysis was used to specifically study the impact of the identified upstream transcription factor 
regulators on downstream heart disease functions, given the observed gene expression changes in HFpEF proxy 
group vs. Normal physiology group.

Ethics statement.  This study was conducted according to the Declaration of Helsinki and approved by the 
regional Ethics Committee Stockholm. All patients were included following oral and written informed consent.

Data Availability
RNA-seq data have been deposited in the EMBL-EBI ArrayExpress database (www.ebi.ac.uk/arrayexpress) under 
accession number E-MTAB-7454.
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